Please rotate your device to landscape mode for a better experience.
Connexion

Monsters
GP: 45 | W: 28 | L: 17 | OTL: 0 | P: 56
GF: 141 | GA: 124 | PP%: 24.72% | PK%: 76.09%
DG: Vincent Attic | Morale : 40 | Moyenne d’équipe : 63
Prochains matchs #728 vs Heat

Centre de jeu
Monsters
28-17-0, 56pts
4
3 Eagles
20-20-4, 44pts
Team Stats
W2SéquenceL1
11-9-0Fiche domicile8-12-1
17-8-0Fiche domicile12-8-3
8-2-0Derniers 10 matchs5-5-0
3.13Buts par match 2.89
2.76Buts contre par match 2.95
24.72%Pourcentage en avantage numérique18.75%
76.09%Pourcentage en désavantage numérique81.43%
Monsters
28-17-0, 56pts
2
1 Roadrunners
24-19-3, 51pts
Team Stats
W2SéquenceOTL1
11-9-0Fiche domicile11-7-2
17-8-0Fiche domicile13-12-1
8-2-0Derniers 10 matchs5-4-1
3.13Buts par match 3.30
2.76Buts contre par match 3.13
24.72%Pourcentage en avantage numérique25.42%
76.09%Pourcentage en désavantage numérique77.44%
Heat
27-13-5, 59pts
2026-01-13
Monsters
28-17-0, 56pts
Statistiques d’équipe
OTL1SéquenceW2
16-4-1Fiche domicile11-9-0
11-9-4Fiche visiteur17-8-0
5-4-110 derniers matchs8-2-0
3.60Buts par match 3.13
3.24Buts contre par match 3.13
21.47%Pourcentage en avantage numérique24.72%
77.14%Pourcentage en désavantage numérique76.09%
Canucks
26-17-1, 53pts
2026-01-15
Monsters
28-17-0, 56pts
Statistiques d’équipe
W2SéquenceW2
13-6-0Fiche domicile11-9-0
13-11-1Fiche visiteur17-8-0
5-5-010 derniers matchs8-2-0
3.43Buts par match 3.13
3.09Buts contre par match 3.13
25.31%Pourcentage en avantage numérique24.72%
78.89%Pourcentage en désavantage numérique76.09%
Monsters
28-17-0, 56pts
2026-01-17
Penguins
21-15-8, 50pts
Statistiques d’équipe
W2SéquenceSOL1
11-9-0Fiche domicile13-6-3
17-8-0Fiche visiteur8-9-5
8-2-010 derniers matchs4-2-4
3.13Buts par match 3.07
2.76Buts contre par match 3.07
24.72%Pourcentage en avantage numérique25.15%
76.09%Pourcentage en désavantage numérique75.69%
Meneurs d'équipe
Pierre EngvallButs
Pierre Engvall
20
Parker WotherspoonPasses
Parker Wotherspoon
33
Pierre EngvallPoints
Pierre Engvall
46
Ville HeinolaPlus/Moins
Ville Heinola
15
Nikita TolopiloVictoires
Nikita Tolopilo
27
Cal PetersenPourcentage d’arrêts
Cal Petersen
0.945

Statistiques d’équipe
Buts pour
141
3.13 GFG
Tirs pour
1452
32.27 Avg
Pourcentage en avantage numérique
24.7%
44 GF
Début de zone offensive
41.2%
Buts contre
124
2.76 GAA
Tirs contre
1329
29.53 Avg
Pourcentage en désavantage numérique
76.1%%
44 GA
Début de la zone défensive
40.0%
Informations de l'équipe

Directeur généralVincent Attic
EntraîneurMike Vellucci
DivisionMetropolitan Division
ConférenceEastern Conference
Capitaine
Assistant #1Pierre Engvall
Assistant #2Carl Grundstrom


Informations de l’aréna

Capacité5,000
Assistance4,651
Billets de saison3,750


Informations de la formation

Équipe Pro24
Équipe Mineure20
Limite contact 44 / 70
Espoirs29


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Pierre Engvall (A)XX100.006438927291828667586663656471730406703011,250,000$
2Emil BemstromXX100.00653986697284856872666761686769040660271925,000$
3Adam EdstromX100.00865386629979806365606164626567040650252925,000$
4Carl Grundstrom (A)XX100.008435906674768064566062636169710406502841,499,999$
5Kyle MacLeanX100.00724089647677906373626065616668040640271925,000$
6Axel Jonsson-FjallbyX100.007037936475798562586059616367690406302821,100,000$
7Carson MeyerX100.007139736470847863566261606368700406302941,499,999$
8Brennan OthmannX100.00694073657384826458626163656264040630232925,000$
9Carl BerglundX100.00733894588276705664575359546567040610262925,000$
10Michael MilneX100.00723875596982795653585755596364040600233925,000$
11Parker WotherspoonX100.007354836576868163306858715068700406502941,499,999$
12Ville OttavainenX100.00814184649182866330665761496365040650242925,000$
13Travis DermottX100.006835886574837363306255795271690406402931,499,999$
14Albert JohanssonX100.00663881656883846430635665516466040630251925,000$
15Matthew RobertsonX100.007642746189858459306056624964660406302531,499,999$
16Ville HeinolaX100.006139846371827164306358605064660406202531,499,999$
17Tobias BjornfotX100.006838876074797559305855615064660406102531,499,999$
Rayé
1Sam Lipkin (R)X100.00704083577971725654555558566264040600233925,000$
2Gavin Hayes (R)X100.00643794577381685458565557536163040590223925,000$
3Josh DaviesX100.005943635369656252555150545061630405502231,499,999$
4Riley StillmanX100.007562666082697659306057655167690406202821,100,000$
5Charlie Wright (R)X100.00643695577361635530565054456264040580223925,000$
MOYENNE D’ÉQUIPE100.0071418362777978614861586256656704062
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Nikita Tolopilo100.00778581987675777675777665730406702641,499,999$
2Cal Petersen100.0075837877747375747375747285040660311925,000$
Rayé
MOYENNE D’ÉQUIPE100.007684808875747675747675697904067
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Mike Vellucci64656970888258USA594500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Pierre EngvallMonsters (CBJ)LW/RW45202646019534782005212510.00%893920.8841317431440001264344.07%5900000.9835001451
2Parker WotherspoonMonsters (CBJ)D45113344-23515687099316511.11%97112324.978917571481011150320%000000.7800111432
3Emil BemstromMonsters (CBJ)C/RW45142741119539157174521168.05%9110724.61513184214401131812052.04%162000000.7405100205
4Travis DermottMonsters (CBJ)D4542630-234091857126565.63%6795021.1311314421370000126100%000000.6300000113
5Carl GrundstromMonsters (CBJ)LW/RW45141428146017953133347610.53%12106423.6557123114300021572140.00%8000000.5325000113
6Ville OttavainenMonsters (CBJ)D457192603601074050225214.00%57100322.315813281480110145100%000000.5200000022
7Axel Jonsson-FjallbyMonsters (CBJ)LW451113245100316111245899.82%1088819.734610281410003904042.86%5600000.5400000121
8Carson MeyerMonsters (CBJ)RW451310233295785713238869.85%1192220.5152727142000003044.26%6100000.5011010120
9Adam EdstromMonsters (CBJ)C4511112246010111106101296510.89%785118.91448321410000790252.06%106600000.5223002112
10Albert JohanssonMonsters (CBJ)D4551520-236091365223409.62%4794921.09358271370000124200%000000.4200000102
11Kyle MacLeanMonsters (CBJ)C4581018814026919433828.51%865014.45000130001701054.51%69900000.5512000003
12Brennan OthmannMonsters (CBJ)LW45513185120524410227814.90%452711.7300000000010050.00%3000000.6811000000
13Matthew RobertsonMonsters (CBJ)D4521315155410107352113129.52%5064814.4200002000149010%000000.4600002021
14Michael MilneMonsters (CBJ)LW4575124220562463184011.11%1069715.5000000000000037.21%4300000.3400000002
15Ville HeinolaMonsters (CBJ)D452810151002338248158.33%3561813.7500001000011000%000000.3200000000
16Carl BerglundMonsters (CBJ)C45123-14072118785.56%11783.9700000000000052.51%17900000.3400000000
17Tobias BjornfotMonsters (CBJ)D45101-310017665416.67%81393.090000000001000%000000.1400000000
Statistiques d’équipe totales ou en moyenne765136245381514505011171002145246310129.37%4411326117.334480124358143812312121723951.71%389300000.571022226161927
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Nikita TolopiloMonsters (CBJ)45271600.9062.7325934311812540220.82417450631
2Cal PetersenMonsters (CBJ)41100.9451.75137204730000.6005045000
Statistiques d’équipe totales ou en moyenne49281700.9082.682730631221327022224545631


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Adam EdstromMonsters (CBJ)C252000-10-12SWENo241 Lbs201 CMNoNoProspectNoNo22024-05-23FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Lien / Lien NHL
Albert JohanssonMonsters (CBJ)D252001-01-04SWENo168 Lbs183 CMNoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien / Lien NHL
Axel Jonsson-FjallbyMonsters (CBJ)LW281998-02-10SWENo189 Lbs185 CMNoNoN/AYesYes2FalseFalsePro & Farm1,100,000$0$0$No1,100,000$--------1,100,000$--------No--------Lien / Lien NHL
Brennan OthmannMonsters (CBJ)LW232003-01-05CANNo192 Lbs183 CMNoNoProspectNoNo22024-05-23FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Lien / Lien NHL
Cal PetersenMonsters (CBJ)G311994-10-19USANo185 Lbs188 CMNoNoTrade2024-10-03YesYes1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien / Lien NHL
Carl BerglundMonsters (CBJ)C262000-01-16SWENo207 Lbs188 CMNoNoProspectNoNo22024-05-23FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Lien / Lien NHL
Carl GrundstromMonsters (CBJ)LW/RW281997-12-01SWENo200 Lbs183 CMNoNoAssign ManuallyYesYes42024-07-17FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$1,499,999$------1,499,999$1,499,999$1,499,999$------NoNoNo------Lien / Lien NHL
Carson MeyerMonsters (CBJ)RW291997-08-18USANo184 Lbs180 CMNoNoAssign ManuallyYesYes42024-07-22FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$1,499,999$------1,499,999$1,499,999$1,499,999$------NoNoNo------Lien / Lien NHL
Charlie WrightMonsters (CBJ)D222003-10-22CANYes179 Lbs185 CMNoNoProspectNoNo32025-06-01FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien / Lien NHL
Emil BemstromMonsters (CBJ)C/RW271999-06-01SWENo190 Lbs183 CMNoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien / Lien NHL
Gavin HayesMonsters (CBJ)LW222004-05-14USAYes177 Lbs185 CMNoNoProspectNoNo32025-06-01FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien / Lien NHL
Josh DaviesMonsters (CBJ)LW222004-03-24CANNo197 Lbs175 CMNoNoFree AgentNoNo32025-07-19FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$-------1,499,999$1,499,999$-------NoNo-------Lien / Lien NHL
Kyle MacLeanMonsters (CBJ)C271999-04-29USANo194 Lbs185 CMNoNoN/ANoNo1FalseFalsePro & Farm925,000$0$0$No---------------------------Lien / Lien NHL
Matthew RobertsonMonsters (CBJ)D252001-03-09CANNo211 Lbs193 CMNoNoFree AgentNoNo32025-07-19FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$-------1,499,999$1,499,999$-------NoNo-------Lien / Lien NHL
Michael MilneMonsters (CBJ)LW232002-09-21CANNo185 Lbs180 CMNoNoN/ANoNo3FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien / Lien NHL
Nikita TolopiloMonsters (CBJ)G262000-04-06BLRNo229 Lbs198 CMNoNoAssign ManuallyNoNo42024-07-17FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$1,499,999$------1,499,999$1,499,999$1,499,999$------NoNoNo------Lien / Lien NHL
Parker WotherspoonMonsters (CBJ)D291997-08-24CANNo192 Lbs185 CMNoNoAssign ManuallyYesYes42024-07-22FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$1,499,999$------1,499,999$1,499,999$1,499,999$------NoNoNo------Lien / Lien NHL
Pierre EngvallMonsters (CBJ)LW/RW301996-05-31SWENo215 Lbs196 CMNoNoN/AYesYes1FalseFalsePro & Farm1,250,000$0$0$No---------------------------Lien / Lien NHL
Riley StillmanMonsters (CBJ)D281998-03-09CANNo207 Lbs188 CMNoNoN/AYesYes2FalseFalsePro & Farm1,100,000$0$0$No1,100,000$--------1,100,000$--------No--------Lien / Lien NHL
Sam LipkinMonsters (CBJ)LW232003-01-03USAYes192 Lbs188 CMNoNoProspectNoNo32025-06-01FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien / Lien NHL
Tobias BjornfotMonsters (CBJ)D252001-04-06SWENo200 Lbs183 CMNoNoFree AgentNoNo32025-07-19FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$-------1,499,999$1,499,999$-------NoNo-------Lien / Lien NHL
Travis DermottMonsters (CBJ)D291996-12-22CANNo200 Lbs183 CMNoNoFree Agent2025-01-03YesYes32025-07-19FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$-------1,499,999$1,499,999$-------NoNo-------Lien / Lien NHL
Ville HeinolaMonsters (CBJ)D252001-03-02FINNo181 Lbs183 CMNoNoFree AgentNoNo32025-07-19FalseFalsePro & Farm1,499,999$0$0$No1,499,999$1,499,999$-------1,499,999$1,499,999$-------NoNo-------Lien / Lien NHL
Ville OttavainenMonsters (CBJ)D242002-08-12FINNo210 Lbs196 CMNoNoProspectNoNo22024-05-23FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------Lien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2425.92197 Lbs185 CM2.501,168,750$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Carl GrundstromEmil BemstromPierre Engvall40014
2Axel Jonsson-FjallbyAdam EdstromCarson Meyer30122
3Brennan OthmannKyle MacLeanMichael Milne20122
4Michael MilneCarl BerglundCarson Meyer10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonVille Ottavainen40122
2Travis DermottAlbert Johansson30122
3Matthew RobertsonVille Heinola20122
4Tobias BjornfotParker Wotherspoon10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Carl GrundstromEmil BemstromPierre Engvall60005
2Axel Jonsson-FjallbyAdam EdstromCarson Meyer40005
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonVille Ottavainen60113
2Travis DermottAlbert Johansson40113
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Emil BemstromCarl Grundstrom60140
2Adam EdstromAxel Jonsson-Fjallby40140
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonVille Ottavainen60140
2Travis DermottAlbert Johansson40140
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Emil Bemstrom60050Parker WotherspoonVille Ottavainen60140
2Adam Edstrom40050Travis DermottAlbert Johansson40140
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Emil BemstromCarl Grundstrom60122
2Adam EdstromAxel Jonsson-Fjallby40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker WotherspoonVille Ottavainen60122
2Travis DermottAlbert Johansson40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Carl GrundstromEmil BemstromPierre EngvallParker WotherspoonVille Ottavainen
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Carl GrundstromEmil BemstromPierre EngvallParker WotherspoonVille Ottavainen
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Kyle MacLean, Carson Meyer, Axel Jonsson-FjallbyKyle MacLean, Carson MeyerKyle MacLean
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Matthew Robertson, Ville Heinola, Tobias BjornfotMatthew RobertsonMatthew Robertson, Ville Heinola
Tirs de pénalité
Pierre Engvall, Emil Bemstrom, Carl Grundstrom, Adam Edstrom, Kyle MacLean
Gardien
#1 : Nikita Tolopilo, #2 : Cal Petersen


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000012-1000000000001010000012-100.000123005539391316461469496483291017300.00%40100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
2Americans2110000057-2110000002111010000036-320.5005101500553939137446146949648582726539111.11%13469.23%1799158750.35%827154053.70%38772253.60%11047591041336588298
3Barracuda11000000716000000000001100000071621.000714210055393913474614694964830108237342.86%30100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
4Bears320000101293100000105412200000075261.0001217290055393913102461469496489328398314428.57%15753.33%0799158750.35%827154053.70%38772253.60%11047591041336588298
5Canucks11000000312000000000001100000031221.000358005539391338461469496483256253133.33%20100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
6Checkers11000000734000000000001100000073421.00071421005539391346461469496482698415240.00%4250.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
7Comets312000001112-12020000058-31100000064220.3331119300055393913132461469496487829377717529.41%9366.67%0799158750.35%827154053.70%38772253.60%11047591041336588298
8Condors211000007611010000045-11100000031220.5007121900553939136246146949648741728484375.00%14378.57%0799158750.35%827154053.70%38772253.60%11047591041336588298
9Crunch10000010541100000105410000000000021.0005813005539391343461469496482264226116.67%2150.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
10Eagles21001000862100010004311100000043141.00081321005539391370461469496483621194411218.18%7185.71%0799158750.35%827154053.70%38772253.60%11047591041336588298
11Firebirds1010000024-2000000000001010000024-200.00024600553939133146146949648391612223133.33%6266.67%0799158750.35%827154053.70%38772253.60%11047591041336588298
12Griffins21001000633110000004221000100021141.0006121800553939134346146949648681928562150.00%14285.71%0799158750.35%827154053.70%38772253.60%11047591041336588298
13Gulls2110000078-11010000025-31100000053220.5007132000553939136246146949648693112628225.00%5180.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
14Heat10000010211000000000001000001021121.000224005539391331461469496482814620300.00%20100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
15Marlies330000001147220000007161100000043161.000112233015539391395461469496487022227312216.67%10190.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
16Moose11000000532000000000001100000053221.000571200553939133646146949648331014165360.00%6266.67%0799158750.35%827154053.70%38772253.60%11047591041336588298
17Penguins31100010651210000104131010000024-240.667691511553939138946146949648841622808225.00%11190.91%0799158750.35%827154053.70%38772253.60%11047591041336588298
18Reign10000010431000000000001000001043121.00045900553939134546146949648308427300.00%20100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
19Roadrunners10001000211000000000001000100021121.00023500553939132146146949648234627300.00%30100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
20Rocket1010000034-11010000034-10000000000000.0003580055393913394614694964835128157228.57%4250.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
21Senators211000003301010000013-21100000020220.5003580155393913704614694964863221355600.00%40100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
22Silver Knights2110000056-1110000004311010000013-220.500591400553939135346146949648612516508112.50%8275.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
23Sound Tigers21100000660110000004131010000025-320.5006111700553939134346146949648782940587342.86%13469.23%0799158750.35%827154053.70%38772253.60%11047591041336588298
24Stars11000000532000000000001100000053221.00059140055393913304614694964829412216233.33%6266.67%0799158750.35%827154053.70%38772253.60%11047591041336588298
25Thunderbirds1010000015-41010000015-40000000000000.000123005539391323461469496483491020400.00%5260.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
26Wild2020000035-21010000023-11010000012-100.000369005539391367461469496484611304111327.27%50100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
27Wolf Pack1010000024-21010000024-20000000000000.00023510553939132746146949648189416200.00%20100.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
28Wolves1010000025-3000000000001010000025-300.0002460055393913174614694964840191225100.00%5260.00%0799158750.35%827154053.70%38772253.60%11047591041336588298
Total4520170305014112417207901030595722513802020826715560.6221412453862355393913145246146949648132944145611171784424.72%1844476.09%1799158750.35%827154053.70%38772253.60%11047591041336588298
_Since Last GM Reset4520170305014112417207901030595722513802020826715560.6221412453862355393913145246146949648132944145611171784424.72%1844476.09%1799158750.35%827154053.70%38772253.60%11047591041336588298
_Vs Conference25129010307969101465000304233911640100037361320.64079139218235539391382046146949648733247263654962323.96%1062972.64%1799158750.35%827154053.70%38772253.60%11047591041336588298
_Vs Division1356000203941-27230002020182633000001923-4140.5383963102215539391341046146949648391130154339491428.57%551769.09%0799158750.35%827154053.70%38772253.60%11047591041336588298

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
4556W214124538614521329441456111723
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
4520173050141124
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
207910305957
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
2513820208267
Derniers 10 matchs
WLOTWOTL SOWSOL
820000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1784424.72%1844476.09%1
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
4614694964855393913
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
799158750.35%827154053.70%38772253.60%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
11047591041336588298


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2025-10-0916Monsters1Admirals2LSommaire du match
5 - 2025-10-1133Monsters1Wild2LSommaire du match
7 - 2025-10-1345Comets5Monsters4LSommaire du match
10 - 2025-10-1667Eagles3Monsters4WXSommaire du match
12 - 2025-10-1882Crunch4Monsters5WXXSommaire du match
15 - 2025-10-21106Monsters5Stars3WSommaire du match
18 - 2025-10-24125Bears4Monsters5WXXSommaire du match
19 - 2025-10-25134Monsters2Penguins4LSommaire du match
22 - 2025-10-28152Monsters3Americans6LSommaire du match
23 - 2025-10-29166Marlies1Monsters2WSommaire du match
26 - 2025-11-01189Thunderbirds5Monsters1LSommaire du match
27 - 2025-11-02195Monsters2Sound Tigers5LSommaire du match
30 - 2025-11-05215Monsters2Heat1WXXSommaire du match
33 - 2025-11-08241Monsters3Canucks1WSommaire du match
35 - 2025-11-10254Monsters3Condors1WSommaire du match
36 - 2025-11-11264Monsters2Firebirds4LSommaire du match
38 - 2025-11-13274Condors5Monsters4LSommaire du match
40 - 2025-11-15290Wolf Pack4Monsters2LSommaire du match
42 - 2025-11-17305Rocket4Monsters3LSommaire du match
43 - 2025-11-18311Monsters5Moose3WSommaire du match
45 - 2025-11-20319Monsters4Marlies3WSommaire du match
47 - 2025-11-22335Monsters2Griffins1WXSommaire du match
49 - 2025-11-24356Monsters4Bears3WSommaire du match
51 - 2025-11-26369Marlies0Monsters5WSommaire du match
53 - 2025-11-28388Penguins0Monsters2WSommaire du match
56 - 2025-12-01406Monsters6Comets4WSommaire du match
59 - 2025-12-04432Griffins2Monsters4WSommaire du match
61 - 2025-12-06442Monsters7Checkers3WSommaire du match
62 - 2025-12-07459Monsters3Bears2WSommaire du match
64 - 2025-12-09471Monsters2Wolves5LSommaire du match
66 - 2025-12-11486Senators3Monsters1LSommaire du match
68 - 2025-12-13502Silver Knights3Monsters4WSommaire du match
71 - 2025-12-16525Gulls5Monsters2LSommaire du match
73 - 2025-12-18540Wild3Monsters2LSommaire du match
75 - 2025-12-20560Monsters5Gulls3WSommaire du match
77 - 2025-12-22574Monsters4Reign3WXXSommaire du match
83 - 2025-12-28603Sound Tigers1Monsters4WSommaire du match
84 - 2025-12-29606Monsters2Senators0WSommaire du match
86 - 2025-12-31627Comets3Monsters1LSommaire du match
89 - 2026-01-03646Americans1Monsters2WSommaire du match
90 - 2026-01-04658Penguins1Monsters2WXXSommaire du match
92 - 2026-01-06675Monsters7Barracuda1WSommaire du match
94 - 2026-01-08692Monsters1Silver Knights3LSommaire du match
96 - 2026-01-10699Monsters4Eagles3WSommaire du match
97 - 2026-01-11714Monsters2Roadrunners1WXSommaire du match
99 - 2026-01-13728Heat-Monsters-
101 - 2026-01-15743Canucks-Monsters-
103 - 2026-01-17760Monsters-Penguins-
106 - 2026-01-20782Senators-Monsters-
108 - 2026-01-22797Stars-Monsters-
110 - 2026-01-24814Crunch-Monsters-
112 - 2026-01-26828Reign-Monsters-
114 - 2026-01-28840Phantoms-Monsters-
116 - 2026-01-30858Monsters-IceHogs-
117 - 2026-01-31868Monsters-Thunderbirds-
120 - 2026-02-03887Monsters-Comets-
121 - 2026-02-04894IceHogs-Monsters-
143 - 2026-02-26918Monsters-Bruins-
145 - 2026-02-28937Sound Tigers-Monsters-
147 - 2026-03-02953Monsters-Wolf Pack-
148 - 2026-03-03963Admirals-Monsters-
150 - 2026-03-05978Checkers-Monsters-
152 - 2026-03-07995Roadrunners-Monsters-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
155 - 2026-03-101015Monsters-Crunch-
157 - 2026-03-121031Monsters-Checkers-
159 - 2026-03-141052Monsters-Phantoms-
162 - 2026-03-171070Wolves-Monsters-
164 - 2026-03-191086Wolf Pack-Monsters-
166 - 2026-03-211104Firebirds-Monsters-
167 - 2026-03-221114Monsters-Sound Tigers-
169 - 2026-03-241125Monsters-Phantoms-
171 - 2026-03-261137Monsters-Rocket-
173 - 2026-03-281158Barracuda-Monsters-
174 - 2026-03-291170Bruins-Monsters-
176 - 2026-03-311185Wolves-Monsters-
178 - 2026-04-021197Monsters-Wolves-
180 - 2026-04-041215Moose-Monsters-
183 - 2026-04-071235Monsters-Griffins-
185 - 2026-04-091247Monsters-Americans-
187 - 2026-04-111271Monsters-Rocket-
188 - 2026-04-121278Bruins-Monsters-
190 - 2026-04-141295Bears-Monsters-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité30002000
Prix des billets2515
Assistance55,45937,559
Assistance PCT92.43%93.90%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
21 4651 - 93.02% 142,340$2,846,795$5000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
1,661,028$ 2,805,000$ 2,805,000$ 500,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 1,409,798$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
2,989,135$ 96 17,124$ 1,643,904$




Monsters Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA